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ABSTRACT 

We give a proof of Tucker's Combinatorial Lemma that proves the fundamen- 
tal nonexistence theorem: There exists no continuous map from B ~ to S n- 
that maps antipodal points of OB" to antipodal points of S n-~. 

The combinatorial proof of  the Brouwer fixed point theorem due to 

Sperner is well known. A similar proof  was given by A. Tucker [Tu] for 

the Borsuk-Ulam antipodal point theorem but doesn't appear to be as widely 

known. Tucker proves his combinatorial lemma in dimension 2 and states 

that it can be generalized. It appears as an exercise in S. Lefschetz's classic 

[ L  p. 141], and a proof  of  a generalization was published by Ky Fan IF]. 
Although reasonably straightforward, I believe that it is worth recording an 

elementary presentation of  this beautiful lemma. The impetus for doing this 

came from my desire to present the Borsuk-Ulam theorem to an under- 

graduate class with no background in topology. Several years ago L Lovhsz 

[Lo] solved a combinatorial problem of  Kneser by appealing, after a suit- 

able reduction, to the Borsuk-Ulam theorem (see also Baranyi [B] for a 

simpler proof, also based on the Borsuk-Ulam theorem). It is thus not 

without interest to point out that a combinatorial proof  can be given to 

this theorem. 

TUCKER'S LEMMA. Let Y, be a triangulation of  the cube [ - 1, + 1] n -- C n, 

centrally symmetric on the boundary o f  C ~, i.e. for every simplex tr o f  Y, on 
OC ~, - t r  is also in ~,. Let ~o be a labelling of  the vertices o f  Y,, by ele- 
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ments o f  { + 1 , + _ 2  . . . . .  +_n} such that for all vertices P~OC",  

~o(P) = - ~( - P). Then there are adjacent vertices P, Q o f  E with 

~o(P) = - ~o(Q). 

Given a continuous map f from C" to its boundary such that for P E aC", 

~o( - P )  = - ~ a ( P ) ,  

one can triangulate C" with Z so that for adjacent vertices II f (P )  - f (Q)  II < 
i Then inducing a labelling ~a(P) by which a face o faC" f (P )  belongs we get a T0. 

contradiction to Tucker's lemma and thereby prove the basic: 

NONEXISTENCE THEOREM. The exists no continuous map from B ~ to S ~- x 

that maps antipodal points on OB" to antipodal points o f  S ~- 1. 

It is straightforward to deduce "fixed point" theorems from this basic 

nonexistence theorem, and since these procedures are well known I won't go 
into further detail. Suffice it to say that these arguments are easy exercises in 

analysis and don't require any deeper knowledge of  the topological structure of 

the sphere and the projective space obtained by identifying antipodal points. 

The remainder of  the paper is devoted to an exposition of a proof of Tucker's 

lemma. 

Denote by C~ +_ l the positive half of  OC"; explicitly C~ +_ ~ consists of  those 

points (x~ . . . .  , x,)  such that xi -- + 1 for some i. Next let 6",+_2 denote the 

"positive half" ofa(C~ +_ ,). Note that OC~ +_ t consists o fn(n  - 1), (n - 2)- cubes 

defined by the requirements xi -- + 1, x~ = - 1 for some pair i ~ j .  For the 
positive half of  aC~+_, we have to select from each pair {xi = + 1, xj = -- 1 }, 
{x~ = - 1, xj = + 1 } a single cube, and we always take that pair where i < j ,  

x~ -- + 1, xj = - 1. It is easy to check that in this way we get an (n - 2)-cell. In 
general C~+_j will denote the union of (n - j ) -ce l l s  defined by j constraints of  

the type 

Xal-~" 21- l ,  Xa2-~- - -  1, Xa, = + 1 . . . . .  Xaj = ( -  1) j +l 

for some i < a~ <a2  < ' - "  < aj < n. It is easy to check that C,+_j is an 

(n - j )  manifold whose boundary is C,+_j_ i U ( - C,+_j_ x). Assuming now that 
we are given a triangulation of C" and a labelling of  the vertices with labels 

drawn from { + 1, + 2 , . . . ,  + n } satisfying the conditions of the lemma 

but that no edge labelled { + i , -  i} exists, we will proceed to derive a 

contradiction. 

Our basic calculation will be to count the number of  pairs in Ck + 
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{(k + 1)-simplex; face labelled (it, - i2, i3 . . . .  , ( - 1 ) k - t i k }  for 1 ~ it < 
i2 < • • • < ik <---- n ,  modulo 2 in two different ways, once by summing over 
(k + 1)-simplices and once by summing over k-simplices. Then summing the 
two expressions over all k-tuples ( i t , . . . ,  ik) will give us an equality between a 
certain expression on Ck + and the same expression on Ck +_ i. At the extremes, 
C + and C +_ 1, we shall get different answers and that will be our contradiction. 
We shall start at C + and do two steps in detail, then explain the general case 
and C + . It will be convenient to have also Co +, the positive boundary of  C~ + , 
which consists of o n e  point. 

Let, in general, Sk(io, i l , . . . ,  ik) denote the number ofk-simplices in Ck + that 
are labelled io, i l , . . . ,  ik. In C + count pairs { 1-simplex, vertex labelled i } by 
edges to obtain 

2Sl(i ,  i) + ~ S t ( i , j )  + S,(i ,  - j ) .  
j ~ i  

Note that by our hypotheses S t ( i , -  i ) =  O. Then count the same set by 
summing over vertices to obtain 

2 × {interior vertices of C~ +, labelled i} + So(i )  + So( - i) .  

The last two terms come from the fact that OC(  ~ = CO+ O ( - CO+) and the 
hypotheses on the antisymmetry of the labelling on 0C". Modulo 2, after 
summing over all i we obtain the basic equality 

(1) ~,, S,(i ,  - j )  + S,( - i , j )  = ~, So(i)  + So( - i). 
i < j  i 

Note that the terms with Si( + i, + j )  dropped out modulo 2 since they 
appear once in the expression for i and once in the expression for j .  The 
fight-hand side of (1) equals 1. Count modulo 2 the number of pairs in 
C2 + {2-simplex, 1-face labelled (i, - j ) } ,  i < j  by summing over 2-simplices 

inC~ + toget  

~, S2(i, - - j ,  k) + $2(i, - j ,  -- k). 
k ./. i , j  

Count the same collection modulo 2 by summing over 1-simplices labelled 
(i, - j )  to get 

S , ( i ,  - j )  + S,( - i , j ) .  

Once again the interior 1-simplices drop out because we count modulo 2. Thus 
we have 
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Y~ S2 ( i ,  - j ,  k )  + S2( i ,  - j ,  - k )  = S~( i ,  - j )  + S , (  - i , j ) .  
k ~ i , j  

Summing over all pairs i < j ,  and reducing again modulo 2, we obtain 

(2) ~ S2(io, - it ,  i2) + $2( - io, it ,  - i2) ffi ~ S t ( i ,  - j )  + S t (  - i , j ) .  
~<il<i2 i <j 

Note that the fight-hand side of  (2) is exactly the left-hand side of  (1). In 
general we shall obtain 

Sk(io,  - -  i t , . . . ,  ( - -  1)kik)  + S k (  - -  io, it ,  - -  i s , . . . ,  ( - -  l ) k + t i k )  
im<il<...<ik 

( k )  = ~ S k _ t ( i o ,  - -  i t , . . . ,  ( - 1 ) k - t i k - I )  
~ < h < ' " < i k - ~  

+ S k - t (  - -  io, il . . . . .  ( - -  1 ) k i k_O.  

Before explaining the general case let's see what happens at (n - 1). There is 
only one n-tuple of distinct labels, (1, - 2 . . . . .  + n). At this point, count 
in C n (the full n-cube) the number  of  incidences in the triangulation of an 
n-simplex with a face labelled (1, - 2, 3 . . . .  , + n). Since there are no further 
labels, and no edge (i, - i) exists, the only types of labellings of  n-simplices 
that occur have t w o  e q u a l  l a b e l s  and thus, modulo 2, this sum is z e r o ,  when 
calculated over n-simplices. On the other hand, calculating by faces labelled 
(1, - 2 . . . . .  + n) gives exactly 

S , _ t ( 1 , -  2 . . . . .  + n ) + S , _ t ( -  1 , + 2  . . . . .  T n) 

which by equations ( 1 ) - ( n -  1) equals 1 modulo 2. This is the desired 
contradiction. 

The proof  of  (k) is exactly like the special cases treated. The key observation 
is that any expression of the type 

Sk(iO, . . . , ia, ia+l,  . . . , ik)  

that we encounter where the signs of ia, ia + t are the same will occur twice in the 
grand sum that is the left-hand side of (k). 

In conclusion we should remark that this method of  proof  can give quan- 
titative versions of the Borsuk-Ulam theorem. Quite precise such results 
appear in [DS] but they are based on the Borsuk theorems and don' t  give an 
"elementary" proof  of  the basic theorems. 
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